Abstract

Abstract Mammalian cells are extremely sensitive to mechanical stress. Ideally, a bioreactor design for mammalian cell culture should assure adequate mixing at low mechanical stress. This paper focuses on the mixing characterization of a novel stirred tank bioreactor configuration, proposed for the culture of mammalian cells, based on the principle of displacing the agitation shaft to an eccentric position and replacing the impellers normally used for mammalian cell culture with a disc impeller with no blades. Experiments in a 1.0 L prototype are conducted to study flow patterns using UV light visualization techniques. Three different impeller shaft positions are tested E = 0.0 , 0.21 , and 0.42. For the purposes of this work, eccentricity ( E ) is defined as the distance between the shaft and the vertical centerline of the tank/tank radius. The mixing performance of two different impeller disc diameters (3.0 and 5.0 cm) are compared. Experimental results show that adequate mixing conditions are achieved at very low Re numbers for some of the eccentric cases considered. Computations are used to illustrate mixing improvement caused by eccentricity, and to validate the existence of globally chaotic conditions for the eccentric cases tested experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.