Abstract

ObjectivesThe difficulty of monitoring organ-specific pathology in systemic lupus erythematosus (SLE) often complicates disease prognostication and treatment. Improved non-invasive biomarkers of active organ pathology, particularly lupus nephritis, would improve patient care. We sought to validate and apply a novel strategy to generate the first comprehensive serum proteome of a lupus mouse model and identify mechanism-linked lupus biomarker candidates for subsequent clinical investigation. MethodsSerum levels of 1308 diverse proteins were measured in eight adult female MRL/lpr lupus mice and eight control MRL/mpj mice. ELISA validation confirmed fold increases. Protein enrichment analysis provided biological relevance to findings. Individual protein levels were correlated with measures of lymphoproliferative, humoral, and renal disease. ResultsFour hundred and six proteins were increased in MRL/lpr serum, including proteins increased in human SLE such as VCAM-1, L-selectin, TNFRI/II, TWEAK, CXCL13, MCP-1, IP-10, IL-10, and TARC. Newly validated proteins included IL-6, IL-17, and MDC. Results of pathway enrichment analysis, which revealed enhancement of cytokine signaling and immune cell migration, reinforced the similarity of the MRL/lpr disease to human pathology. Fifty-two proteins positively correlated with at least one measure of lupus-like disease. TECK, TSLP, PDGFR-alpha, and MDC were identified as novel candidate biomarkers of renal disease. ConclusionsWe successfully validated a novel serum proteomic screening strategy in a spontaneous murine lupus model that highlighted potential new biomarkers. Importantly, we generated a comprehensive snapshot of the serum proteome which will enable identification of other candidates and serve as a reference for future mechanistic and therapeutic studies in lupus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call