Abstract

Decreases in microelement contents and increases in toxic element levels seriously affect crop growth and human health. Thus, improving the elemental content of food crops is an important environmental issue for enhancing crop production and quality. Previous research showed that metal tolerance protein 1 (MTP1) is localized at the vacuole membrane, wherein it mediates the translocation of heavy metal ions. Therefore, LmMTP1 was isolated from annual ryegrass (Lolium multiflorum). Real-time quantitative PCR analyses revealed LmMTP1 expression increased significantly in the roots after Zn, Co, and Cd treatments. Confocal microscopy images indicated LmMTP1 was localized at the vacuole membrane. The expression of LmMTP1 in transgenic yeast and rice resulted in increased Zn, Co, and Cd tolerance. The examination of heavy metal contents detected increases in the Zn and Co contents, but decreases in the Cd contents, of yeast and rice. Moreover, the grains of LmMTP1-expressing transgenic rice had higher Zn/Co contents and lower Cd contents than wild-type rice grains. These results imply that LmMTP1 influences Zn, Co, and Cd tolerance and accumulation. Furthermore, LmMTP1 might be a novel biofortification-related candidate gene useful for improving the storage of essential elements and eliminating toxic heavy metals from crops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call