Abstract

Alzheimer's disease is a neurodegenerative disease caused by the deposition and accumulation of amyloid-β (Aβ) peptides in the brain neurons. Current medications are not a definitive cure for this disease, but they can hamper the signs and symptoms of Alzheimer's disease. Therefore, prevention is the best way to deal with this disease. In this study, the novel structures based on MBenes (such as Cd2B, Mo2B, Cu2B, and Ta2B) are proposed to prevent amyloid-β accumulation in Alzheimer's disease. Regarding the remarkable MBene properties such as tunability, biocompatibility, and low manufacturing cost, the effect of these structures on amyloid-β deformation was explored using molecular dynamics simulation. To provide an atomic analysis of Beta-amyloid behavior in the presence of these structures, the compaction, contact area, and stability of Beta-amyloid were investigated. The results indicated the satisfactory performance of MBenes on the destabilization of amyloid-β structures. Moreover, given the higher interactions between Cd2B and amyloid-β, the instability, compaction, and the contact area of amyloid-β particles were investigated in this complex. The findings confirmed Cd2B as the best structure to prevent amyloid-β accumulation. The results of this investigation paved the way for the development of these structures as a medicinal agent to prevent Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.