Abstract

Biobased composites from recycled carbon fibre and poly(trimethylene terephthalate) (PTT) were fabricated by extrusion followed by injection moulding. The mechanical, thermal and morphological properties of the composites were investigated as a function of recycled carbon fibre content. The mechanical properties such as tensile, flexural and notched impact strength as well as tensile and flexural modulus of the composites increased with increasing recycled carbon fibre content. The improvement of stiffness and toughness of composite materials is one of the important findings of this investigation. Experimental values of tensile strength and modulus were compared with parallel, series and Hirsch’s models. The morphology of the composites was analysed by scanning electron microscopy. Differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical analysis were used to measure the thermal properties of the composites. Recycled carbon fibre loading appreciably improved the storage modulus of PTT. Thermal stability and crystallization temperature of PTT also improved with the recycled carbon fibre content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.