Abstract

Assessing the biocompatibility of magnetic nanoparticles for biomedical applications is highly demanded and attracted an increasing interest in the last years. We, herein report the synthesis, physical characterization, and biocompatibility of CoFe(2-x-y-z)GdxSmyHozO4 (x = y = z = 0, 0.01) nanoparticles (NPs) synthesized by the auto-combustion method for the first time. The physicochemical and magnetic properties of the synthesized nanoparticles were fully characterized using various techniques including X-ray diffraction (XRD), Fourier transforms infrared spectra (FTIR), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). A single-phase with a space group Fd-3m and mixed spinel structure were confirmed by XRD, Rietveld analysis, and the cation distribution study. FTIR confirms the formation of the crystallographic sites of the spinel structure, namely the octahedral site and the tetrahedral site. The nanoparticles exhibited a quasi-spherical shape with size distribution (24–51 nm). VSM measurements reveal that magnetic properties can be tuned by doping for biomedical applications. To evaluate the safety of our nanoparticle sub-chronic toxicity was highlighted in Wistar rats by oral administration at doses of 500, 250,125, and 50 mg/kg and by intraperitoneal injection at doses of 40,20,10, and 5 mg/kg. Results showed no significant changes in the hematological parameters, serum biochemical system, organ weight, and histopathological examination (p > 0,05) for doses below 250 mg/kg and 40 mg/kg administered orally or by intraperitoneal injection respectively. The results of the current study suggesting that treatment with the nanoparticle for 28 days does not produce any significant toxicity in the male and female rats for the either using voices (oral, intraperitoneal) except at high doses. These findings reported here strongly suggest that the as-prepared nanoparticles can be used in several biomedical applications, including separation and purification, drug delivery, imaging (MRI contrast), and therapy (hyperthermia).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call