Abstract

Application of amino acids-immobilized porous materials for drug delivery studies has been attracted a lot of attention in the recent years. In this study, amino acids-grafted graphene foams were prepared by anchoring of Alanine (Ala), Cysteine (Cys) and Glycine (Gly) amino acids on the surface of graphene oxide (GO) nanostructures and used as the novel biocompatible carriers to control releasing of the cisplatin as the cytotoxic anticancer drug. The characterization of prepared compounds was done by the FT-IR, Raman, TGA, N2 adsorption-desorption isotherms, SEM, and TEM techniques. Adsorption and in vitro release behavior of amino acids-functionalized foams were studied using ICP standard method. The results show that the drug loading amount and the drug releasing rate are significantly enhanced upon functionalization process. The Ala-Foam sample with the larger surface area and pore volume showed a higher loading content (4.53%) than other samples. In addition, the MTT test on the two MCF-7 and HepG2 human cancer cell lines exhibited an acceptable biocompatibility and sustainable drug releasing from the carriers up to 48h, leading to the dosage frequency decrease and the patient compliance improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.