Abstract

Abstract: Nature has the best design, which has evolved over millennia for sustainability. The current research aims to provide a generalized algorithm for multi-legged fault-tolerant walking robots with 3 degrees of freedom per leg. An inverse-kinematics-based model has been implemented for strategic foot placement. Animals walk over rough ground and move each leg separately, often falling in a non-standard gait. The present work allows a provision for the designed robot to move over uneven terrain in a controlled manner, using adaptive gaits while maintaining a constant hip height. One of the key features of the developed algorithm is the ability to adapt locomotion and continue functioning even if some legs are injured. An experimental study was carried out in order to validate the effectiveness and applicability of the current algorithm. As far as the present knowledge of the authors goes, there is no systematic study of developing a generalized algorithm for fault-tolerant multi-legged robots available in the open literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.