Abstract

The paper presents the synthesis and thermal behavior of novel epoxy resins prepared from epoxidized castor oil in the presence of or without trimethylolpropane triglycidyl ether (TMP) crosslinked with 3-hexahydro-4-methylphtalic anhydride (MHHPA) and their comparison with a petroleum-based epoxy resin (MHHPA and TMP). Epoxidized castor oil (ECO) was obtained via in situ epoxidation of castor oil with peroxyacetic acid. The chemical structures of castor oil (CO), ECO, and epoxy matrix were confirmed using FT-IR and 1H-NMR spectroscopy. The morphological and thermal behavior of the resulting products have been investigated. Compared to petroleum-based resins, castor oil-based ones have a lower Tg. Anyway, the introduction of TMP increases the Tg of the resins containing ECO. The morphological behavior is not significantly influenced by using ECO or by adding TMP in the synthesis of resins. The dielectric properties of epoxy resins have been analyzed as a function of frequency (1 kHz-1 MHz) and temperature (-50 to 200 °C). The water absorption test showed that as Tg increased, the percent mass of water ingress decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.