Abstract

Neutrophil elastase, a powerful physiological defence tool, may serve as drug target for diverse diseases due to its bystander effect on host cells like chronic obstructive pulmonary disease (COPD). Here, we synthesised seven novel benzoxazinone derivatives and identified that these synthetic compounds are human neutrophil elastase inhibitor that was demonstrated by enzyme substrate kinetic assay. One such compound, PD05, emerged as the most potent inhibitor with lower IC50 as compared to control drug sivelestat. While this inhibition is competitive based on substrate dilution assay, PD05 showed a high binding affinity for human neutrophil elastase (Kd = 1.63 nM) with faster association and dissociation rate compared to notable elastase inhibitors like ONO 6818 and AZD9668, and its interaction with human neutrophil elastase was fully reversible.Preclinical pharmacokinetic studies were performed in vitro where protein binding was found to be 72% with a high recovery rate, aqueous solubility of 194.7 μM, low permeability along with a favourable hERG. Experiments with cell line revealed that the molecule successfully prevented elastase induced rounding and retracted cell morphology and cell cytotoxicity. In mouse model PD05 is able to reduce the alveolar collapse induced by neutrophil elastase. In summary, we demonstrate the in situ, in vitro and in vivo anti-elastase potential of the newly synthesised benzoxazinone derivative PD05 and thus this could be promising candidate for further investigation as a drug for the treatment of COPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.