Abstract

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized cancer treatment, particularly for hematopoietic malignancies. CAR T-cell therapy is a living drug with fundamentally different characteristics from those of other therapies. For example, CAR T-cell therapy efficacy may not increase with dose, and dose-limiting toxicity is rarely observed in the therapeutic dose range. Consequently, the conventional trial design paradigm is not suitable for the development of CAR T-cell therapy. Here, we review and introduce the phase I-II trial design paradigm to optimize the dose of CAR T-cell therapy on the basis of both toxicity and efficacy. We describe several novel Bayesian model-assisted designs, including BOIN12 and U-BOIN, which are simple to implement and have excellent operating characteristics for identifying the optimal biological dose for CAR T-cell therapy. Examples and software are provided to facilitate the use of these novel designs to accelerate the development of CAR T-cell therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.