Abstract
Niobate photo catalysts draw significant attention in the fields of both pollutant degradation and H2 generation. However, their chemically inert nature limits the synthetic routes available to obtain these semiconductors. In this work, we report the synthesis of bismuth niobate (Bi5Nb3O15) by a simple solvothermal method and incorporation of this material with nitrogen doped reduced graphene oxide for the first time. The synthesized catalysts were characterized by XRD, Raman, N2 adsorption-desorption isotherm, DRS-UV, FESEM and TEM analyses. XRD patterns exhibited single crystalline orthorhombic structure for Bi5Nb3O15. Electron microscopy showed plate-like structure for Bi5Nb3O15/N-rGO. UV–vis diffuse reflectance spectra revealed red shifting of reduced graphene oxide and nitrogen doped reduced graphene oxide composite catalysts indicating its visible activity. This novel Bi5Nb3O15/N-doped reduced graphene oxide showed higher photocatalytic decolorization of reactive dyes namely reactive blue 19 and reactive orange 16 under visible light than bare Bi5Nb3O15orBi5Nb3O15/rGO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.