Abstract
How organisms sense and respond to noxious temperatures is still poorly understood. Further, the mechanisms underlying sensitization of the sensory machinery, such as in patients experiencing peripheral neuropathy or injury-induced sensitization, are not well characterized. The genetically tractable Drosophila model has been used to study the cells and genes required for noxious heat detection, which has yielded multiple conserved genes of interest. Little is known however about the cells and receptors important for noxious cold sensing. Although, Drosophila does not survive prolonged exposure to cold temperatures (≤10 ºC), and will avoid cool, preferring warmer temperatures in behavioral preference assays, how they sense and possibly avoid noxious cold stimuli has only recently been investigated. Here we describe and characterize the first noxious cold (≤10 ºC) behavioral assay in Drosophila. Using this tool and assay, we show an investigator how to qualitatively and quantitatively assess cold nociceptive behaviors. This can be done under normal/healthy culture conditions, or presumably in the context of disease, injury or sensitization. Further, this assay can be applied to larvae selected for desired genotypes, which might impact thermosensation, pain, or nociceptive sensitization. Given that pain is a highly conserved process, using this assay to further studythermal nociception will likely glean important understanding of pain processes in other species, including vertebrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.