Abstract
Mgaloblishvili, a Vitis vinifera cultivar, exhibits unique resistance traits against Plasmopara viticola, the downy mildew agent. This offers the unique opportunity of exploring the molecular responses in compatible and incompatible plant-pathogen interaction. In this study, whole transcriptomes of Mgaloblishvili, Pinot noir (a V. vinifera susceptible cultivar), and Bianca (a resistant hybrid) leaves, inoculated and non-inoculated with the pathogen, were used to identify P. viticola effector-encoding genes and plant susceptibility/resistance genes. Multiple effector-encoding genes were identified in P. viticola transcriptome, with remarkable expression differences in relation to the inoculated grapevine cultivar. Intriguingly, five apoplastic effectors specifically associated with resistance in V. vinifera. Gene coexpression network analysis identified specific modules and metabolic changes occurring during infection in the three grapevine cultivars. Analysis of these data allowed, for the first time, the detection in V. vinifera of a putative P. viticola susceptibility gene, encoding a LOB domain-containing protein. Finally, the de novo assembly of Mgaloblishvili, Pinot noir, and Bianca transcriptomes and their comparison highlighted novel candidate genes that might be at the basis of the resistant phenotype. These results open the way to functional analysis studies and to new perspectives in molecular breeding of grapevine for resistance to P. viticola.
Highlights
The achievement of an optimal management of fungal diseases, which is effective, economically feasible for the farmer and safe for human health and the environment, requires a coordinated effort, where all the strategies available are improved and integrated [1,2,3,4,5]
The analysis of P. viticola transcriptome on Mgaloblishvili (PvM), Pinot noir (PvP), and Bianca (PvB) showed that 5251 genes were expressed by the pathogen at 3 dai
Further analysis highlighted the presence of 1519 differentially expressed genes (DEGs) when infecting Mgaloblishvili in comparison with Pinot noir (PvM_vs_PvP), Mgaloblishvili in comparison with Bianca (PvM_vs_PvB), and Pinot noir in comparison with Bianca (PvP_vs_PvB; Table 1)
Summary
The achievement of an optimal management of fungal diseases, which is effective, economically feasible for the farmer and safe for human health and the environment, requires a coordinated effort, where all the strategies available (agronomic practices, genetic selection of resistant cultivars, and biological and chemical control) are improved and integrated [1,2,3,4,5]. A durable resistance, i.e., a resistance that remains effective while the cultivar possessing it is widely cultivated, can be achieved by pyramiding disease resistance genes in the same plant [7] For this purpose, the identification of new resistance genes is essential for obtaining resistant varieties, which can be cultivated worldwide without being impacted by the pathogen’s adaptability and variability. The identification of new resistance genes is essential for obtaining resistant varieties, which can be cultivated worldwide without being impacted by the pathogen’s adaptability and variability Another possibility for obtaining resistant cultivars relies on the silencing of susceptibility genes, essential for compatible plant–pathogen interactions and required for successful pathogen infection [8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.