Abstract

ABSTRACTBiochemical and structural changes of dermal connective tissue substantially contribute to the phenotype of aging skin. To study connective tissue metabolism with respect to ultraviolet (UV) exposure, we performed an in vitro (human dermal fibroblasts) and an in vivo complementary DNA array study in combination with protein analysis in young and old volunteers. Several genes of the collagen metabolism such as Collagen I, III and VI as well as heat shock protein 47 and matrix metalloproteinase‐1 are expressed differentially, indicating UV‐mediated effects on collagen expression, processing and degradation. In particular, Collagen I is time and age dependently reduced after a single UV exposure in human skin in vivo. Moreover, older subjects display a lower baseline level and a shorter UV‐mediated increase in hyaluronan (HA) levels. To counteract these age‐dependent changes, cultured fibroblasts were treated with a specific soy extract. This treatment resulted in increased collagen and HA synthesis. In a placebo‐controlled in vivo study, topical application of an isoflavone‐containing emulsion significantly enhanced the number of dermal papillae per area after 2 weeks. Because the flattening of the dermal‐epidermal junction is the most reproducible structural change in aged skin, this soy extract appears to rejuvenate the structure of mature skin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.