Abstract

Reducing recurrence following radical resection of colon cancer without overtreatment or undertreatment remains a challenge. Postoperative adjuvant chemotherapy (Adj) is currently administered based solely on pathologic TNM stage. However, prognosis can vary significantly among patients with the same disease stage. Therefore, novel classification systems in addition to the TNM are necessary to inform decision-making regarding postoperative treatment strategies, especially stage II and III disease, and minimize overtreatment and undertreatment with Adj. We developed a prognostic prediction system for colorectal cancer using a combined convolutional neural network and support vector machine approach to extract features from hematoxylin and eosin staining images. We combined the TNM and our artificial intelligence (AI)–based classification system into a modified TNM-AI classification system with high discriminative power for recurrence-free survival. Furthermore, the cancer cell population recognized by this system as low risk of recurrence exhibited the mutational signature SBS87 as a genetic phenotype. The novel AI-based classification system developed here is expected to play an important role in prognostic prediction and personalized treatment selection in oncology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.