Abstract

In acute stroke, identifying early changes (parenchymal hypodensity) on non-contrast CT (NCCT) can be challenging. We aimed to identify whether the accuracy of clinicians in detecting acute hypodensity in ischaemic stroke patients on a non-contrast CT is improved with the use of an Artificial Intelligence (AI) based, automated hypodensity detection algorithm (HDT) using MRI-DWI as the gold standard. The study employed a case-crossover within-clinician design, where 32 clinicians were tasked with identifying hypodensity lesions on NCCT scans for five a priori selected patient cases, before and after viewing the AI-based HDT. The DICE similarity coefficient (DICE score) was the primary measure of accuracy. Statistical analysis compared DICE scores with and without AI-based HDT using mixed-effects linear regression, with individual NCCT scans and clinicians as nested random effects. The AI-based HDT had a mean DICE score of 0.62 for detecting hypodensity across all NCCT scans. Clinicians' overall mean DICE score was 0.33 (SD 0.31) before AI-based HDT implementation and 0.40 (SD 0.27) after implementation. AI-based HDT use was associated with an increase of 0.07 (95% CI: 0.02-0.11, p = 0.003) in DICE score accounting for individual scan and clinician effects. For scans with small lesions, clinicians achieved a mean increase in DICE score of 0.08 (95% CI: 0.02, 0.13, p = 0.004) following AI-based HDT use. In a subgroup of 15 trainees, DICE score improved with AI-based HDT implementation [mean difference in DICE 0.09 (95% CI: 0.03, 0.14, p = 0.004)]. AI-based automated hypodensity detection has potential to enhance clinician accuracy of detecting hypodensity in acute stroke diagnosis, especially for smaller lesions, and notably for less experienced clinicians.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call