Abstract

This study aimed to determine the usefulness of novel parameters of left ventricular (LV) endocardial area strain (AS) in assessing global LV performance in patients with repaired tetralogy of Fallot (TOF). Thirty patients, aged 21.7 ± 5.8 years, with repaired TOF and 25 healthy subjects aged 19.9 ± 5.5 years were studied. Three-dimensional LV wall motion tracking was performed to determine global and regional peak AS, an AS-systolic dyssynchrony index (SDI), and LV volumes and ejection fraction. The AS-SDI was derived from the dispersion of time-to-minimum segmental endocardial areas, expressed as a percentage of RR interval, using a 16-segment model. The LV global performance plot was generated by plotting peak global AS against AS-SDI. The coefficients of variations for intra- and interobserver measurement of LV global AS were 6.3% and 10.6%, respectively. Compared with controls, patients had significantly lower global AS (30.5% ± 4.5% vs. 40.9% ± 2.8%, P < .001) and greater AS-SDI (10.0% ± 2.9% vs. 4.1% ± 1.4%, P < .001). Global AS (r= 0.94, P < .001) and AS-SDI (r= -0.76, P < .001) correlated strongly with LV ejection fraction. The global performance plot identified 87% of patients (26/30) with both reduced LV global AS and LV systolic mechanical dyssynchrony. AS measurement of LV endocardium based on three-dimensional wall motion tracking is reproducible and enables convenient assessment of global LV performance using a composite representation of parameters, including global AS and an AS-derived index of mechanical dyssynchrony.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call