Abstract

Antimicrobial resistance is a rapidly increasing problem impacting the successful treatment of bacterial infectious disease. To combat resistance, the development of new treatment options is required. Recent advances in technology have aided in the discovery of novel antibacterial agents, specifically through genome mining for novel natural product biosynthetic gene clusters and improved small molecule high-throughput screening methods. Novel targets such as lipopolysaccharide and fatty acid biosyntheses have been identified by essential gene studies, representing a shift from traditional antibiotic targets. Finally, inhibiting non-essential genes with small molecules is being explored as a method for rescuing the activity of 'old' antibiotics, providing a novel synergistic approach to antimicrobial discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.