Abstract
Data are presented which evaluate the performance of a pilot-scale treatment system using pelletised hydrous ferric oxide (HFO; a waste stream from coal mine water treatment) as a high surface area sorbent for removing zinc (Zn) from a metal mine water discharge in the North Pennines Orefield, UK. Over a 10-month period the system removed Zn at mean area- and volume-adjusted removal rates of 3.7 and 8.1 g m −3 day −1, respectively, with a mean treatment efficiency of 32% at a low mean residence time of 49 min. There were seasonal effects in Zn removal owing to establishment and dieback of algae in the treatment tank. This led to increased Zn uptake in early summer months followed by slight Zn release upon algae senescence. In addition to these biosorptive processes, the principal sinks for Zn appear to be (1) sorption onto the HFO surface, and (2) precipitation with calcite-dominated secondary minerals. The latter were formed as a product of dissolution of portlandite in the cement binder and calcium recarbonation. Further optimisation of the HFO pelletisation process holds the possibility for providing a low-cost, low footprint treatment option for metal rich mine waters, in addition to a valuable after-use for recovered HFO from coal mine water treatment facilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.