Abstract

Current blood glucose monitoring (BGM) techniques are invasive as they require a finger prick blood sample, a repetitively painful process that creates the risk of infection. BGM is essential to avoid complications arising due to abnormal blood glucose levels in diabetic patients. Laser light-based sensors have demonstrated a superior potential for BGM. Existing near-infrared (NIR)-based BGM techniques have shortcomings, such as the absorption of light in human tissue, higher signal-to-noise ratio, and lower accuracy, and these disadvantages have prevented NIR techniques from being employed for commercial BGM applications. A simple, compact, and cost-effective non-invasive device using visible red laser light of wavelength 650 nm for BGM (RL-BGM) is implemented in this paper. The RL-BGM monitoring device has three major technical advantages over NIR. Unlike NIR, red laser light has ~30 times better transmittance through human tissue. Furthermore, when compared with NIR, the refractive index of laser light is more sensitive to the variations in glucose level concentration resulting in faster response times ~7–10 s. Red laser light also demonstrates both higher linearity and accuracy for BGM. The designed RL-BGM device has been tested for both in vitro and in vivo cases and several experimental results have been generated to ensure the accuracy and precision of the proposed BGM sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call