Abstract

A modified laser Doppler flowmetry technique that significantly improves the performance of the current technique in measuring pulpal blood flow is described. A preliminary model demonstrates that, by using a forward-scattered geometry, the detected signal will have a much higher signal-to-noise ratio and calibration capacity. The forward-scattered signal is readily detectable because teeth are relatively thin organs with moderate optical loss. Preliminary experiments comparing forward-scattered detection with conventional back-scattered detection were carried out using an extracted, perfused human molar. The results showed that: (1) the existing back-scattering method produced readings that fluctuated by as much as 187% in response to small changes in sensor position relative to the tooth and (2) the forward-scattered method produced consistent readings (within 10%) that were independent of the sensor position, a signal-to-noise ratio that was at least 5.6 times higher than that obtained by the back-scattering method, and a linear response to flow rate. The results validated the findings of the preliminary model and clearly showed the superiority of the forward-scattering geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.