Abstract

We present herewith a novel approach of equally thick AFE/FE (ZrO2/HZO) bilayer stack heterostructure films for achieving an equivalent oxide thickness (EOT) of 4.1 Å with a dielectric constant (κ) of 56 in complementary metal-oxide semiconductor (CMOS) compatible metal-ferroelectric-metal (MFM) capacitors using a high-pressure annealing (HPA) technique. The low EOT and high κ values were achieved by careful optimization of AFE/FE film thicknesses and HPA conditions near the morphotropic phase boundary (MPB) after field cycling effects. Stable leakage current density (J < 10-7 A/cm2 at ±0.8 V) was found at 3/3 nm bilayer stack films (κ = 56 and EOT = 4.1 Å) measured at room temperature. In comparison with previous work, our remarkable achievement stems from the interfacial coupling between FE and AFE films as well as a high-quality crystalline structure formed by HPA. Kinetically stabilized hafnia films result in a small grain size in bilayer films, leading to reducing the leakage current density. Further, a higher κ value of 59 and lower EOT of 3.4 Å were found at 333 K. However, stable leakage current density was found at 273 K with a high κ value of 53 and EOT of 3.85 Å with J < 10-7 A/cm2. This is the lowest recorded EOT employing hafnia and TiN electrodes that are compatible with CMOS, and it has important implications for future dynamic random access memory (DRAM) technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.