Abstract

In this study, the divide-and-conquer (DC) method is extended to configuration-interaction singles, time-dependent density functional, and symmetry-adapted cluster configuration interaction (SACCI) theories for enabling excited-state calculations of large systems. In DC-based excited-state theories, one subsystem is selected as the excitation subsystem and analyzed via excited-state calculations. Test calculations for formaldehyde in water and a conjugated aldehyde demonstrate the high accuracy and effectiveness of these methods. To demonstrate the efficiency of the method, we calculated the π-π* excited state of photoactive yellow protein (PYP). The numerical applications to PYP confirm that the DC-SACCI method significantly accelerates the excited-state calculations while maintaining high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.