Abstract
Context. In cold regions of the interstellar medium with intense ultraviolet radiation fields, photodesorption has been suggested as a nonthermal desorption mechanism promoting the transition of molecules from the solid state to the gas phase. Laboratory experiments measuring photodesorption rates are crucial in attempting to explain high molecular gas phase abundances of species that are expected to form in the solid state, such as methane, methanol, and acetonitrile, and to aid astrochemical modeling. Due to the convoluted competition between photodesorption and photoconversion, it is far from trivial to derive accurate photodesorption rates. Aims. The aim of this study is to apply a new methodology to discriminate between the two processes. The method has been validated using the well-studied case of CO and extended to CH4, CH3OH, and CH3CN. Methods. Vacuum ultraviolet (VUV; photon energy of 7–10.2 eV) irradiated ices at 20 K are studied, first as a pure CH4, CH3OH, or CH3CN ice and subsequently with an Ar coating on top. The latter is transparent to the VUV photons (wavelength below 200 nm), but it quenches the photodesorption process. Comparing the laser desorption post ionization time-of-flight mass spectrometry of the ices with and without the Ar coating provides information on the different interactions of the VUV photons with the ice. Results. The newly developed experimental technique allowed for a derivation of photodesorption rates for ices at 20 K of: CO (3.1 ± 0.3)×10−3 mol. photon−1, CH4 (3.1 ± 0.5)×10−2 mol. photon−1, and upper limits for CH3OH (< 6 × 10−5 mol. photon−1) and CH3CN (< 7.4 × 10−4 mol. photon−1); in the latter case, no literature values have been reported yet. The newly introduced approach provides more insight into the photodesorption process, in particular, for commonly observed complex organic molecules (COMs). Photoconversion cross sections are presented in the 7–10.2 eV range. The possible role of photodesorption and photoconversion in the formation of interstellar COMs is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.