Abstract

One of the strategies to combat antibiotic resistance can be the use of plant materials in combination with antibiotics, taking into account that phytochemicals can act as antibiotic resistance-modifying agents. This can give a second life to the traditional antibiotics. The aim was to evaluate antibiotic modulatory effect of crude extracts from Agrimonia eupatoria, Hypericum alpestre, Rumex obtusifolius and Sanguisorba officinalis herbs towards several commercial antibiotics using some Gram-positive and Gram-negative bacteria. The antibiotic modulatory activity was tested by determining MICs of antibiotics in the absence and presence of plant crude extracts at subinhibitory concentrations. Antiviral potential of different extracts of tested plant materials was also explored by double overlay plaque assay. The tested plant crude extracts exhibited high modulatory activity towards used antibiotics. Particularly, high modulatory activity was observed with extracts of H. alpestre and R. obtusifolius. Many plant-antibiotic combinations induced the decrease in MICs of antibiotics up to ~fourfold indicating synergy. Moreover, the similar change was observed at both subinhibitory concentrations (MIC/2 and MIC/4) of the same plant crude extract. High anti-phage activity of plants with the exception of Lilium armenum against T4 phage of Escherichia coli C-T4 was also shown. Plant crude extract or commercial antibiotic combinations significantly increased the efficiency of antibiotics. Tested plant materials with exception of L. armenum have antiviral property. For the first time, antibiotic modulatory activity of tested herb extracts was shown, which could have potential in practical applications. Tested plant materials with exception of L. armenum could have prospective, as a source of new antiviral compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.