Abstract

BackgroundNumerical methods are used to solve differential equations, but few are effective for nonlinear ordinary differential equations (ODEs) of order higher than one. This paper proposes a new method for such ODEs, based on Taylor series expansion. The new method is a second-order method for second-order ODEs, and it is equivalent to the central difference method, a well-known method for solving differential equations. The new method is also simple to implement for higher-order differential equations. The proposed technique was applied to solve the Van der Pol and Van der Pol–Duffing equations. It is stable over a wide range of nonlinearity and produces accurate and reliable results. For the self-excitation Van der Pol equation, the proposed technique was applied with different values of nonlinear damping.ResultsThe results were compared with those obtained using the ODE15s solver in MATLAB. The two sets of results showed excellent agreement. For the forced Van der Pol–Duffing equation, the proposed technique was applied with different values of exciting force amplitude and frequency. It was found that for certain conditions, the solution obtained using the proposed technique differed from that obtained using ODE15s.ConclusionsThe solution obtained using the proposed technique showed good agreement with the solutions obtained using ODE45 and Runge–Kutta fourth order. The results show that the proposed approach is very simple to apply and produces acceptable error. It is a powerful and versatile tool for solving of high-order nonlinear differential equations accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call