Abstract

In the present study, we consider the q-homotopy analysis transform method to find the solution for modified Camassa–Holm and Degasperis–Procesi equations using the Caputo fractional operator. Both the considered equations are nonlinear and exemplify shallow water behaviour. We present the solution procedure for the fractional operator and the projected solution procedure gives a rapidly convergent series solution. The solution behaviour is demonstrated as compared with the exact solution and the response is plotted in 2D plots for a diverse fractional-order achieved by the Caputo derivative to show the importance of incorporating the generalised concept. The accuracy of the considered method is illustrated with available results in the numerical simulation. The convergence providence of the achieved solution is established in -curves for a distinct arbitrary order. Moreover, some simulations and the important nature of the considered model, with the help of obtained results, shows the efficiency of the considered fractional operator and algorithm, while examining the nonlinear equations describing real-world problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.