Abstract
Insulin stability during microencapsulation and subsequent release is essential for retaining its biological activity. The successful delivery of insulin relies on the proper selection of stabilizers in addition to other parameters. Attempts were made to address the problem with a few combination of stabilizers for maintaining the integrity of insulin during formulation and delivery. Insulin loaded nanoparticles with different stabilizers such as pluronic F68, trehalose, and sodium bicarbonate were prepared by the double emulsion evaporation method using two different copolymer ratios of poly(DL-lactide-co-glycolide) (50:50 and 85:15). The presence of stabilizers in the nanoparticles resulted in an increase in the particle size but a reduction of encapsulation efficiency. Insulin release rate was comparatively higher for the batches containing stabilizers when compared with controls for both the copolymer ratios. Also the presence of stabilizers resulted in sustained release of insulin resulting in prolonged reduction of blood glucose levels in streptozotocin induced diabetic rats. From the in vitro and in vivo studies, we concluded that a combination of stabilizers results in beneficial effects without compromising the advantages of delivery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.