Abstract

This cluster issue of Journal of Physics D: Applied Physics arises from the Novel Applications of Surface Modification Conference (NASM 2007) held at Southampton University during 18–20 September 2007. It contains a collection of six papers based on both invited and contributed presentations at the conference. The NASM 2007 conference was organized by the Applied Physics and Technology Division of the Institute of Physics, and was co-sponsored by the Institute of Materials, Minerals and Mining, the Institution of Mechanical Engineers and the British Vacuum Council. The modification of the surface of a material allows the production of far superior products in terms of reduced wear, increased corrosion resistance, better biocompatibility, improved optical properties and altered electrical/electronic properties. Clearly, as surface modification methods improve, there are many more possible applications of such surface tailoring methods. The NASM 2007 Conference was planned so that scientists, engineers and manufacturers in different fields could come together to appraise the present applications of surface modification, establish where opportunities lie, identify the most significant challenges and address how problems should be tackled.The six papers contained within the cluster illustrate the diversity and breadth of the conference. The papers describe state-of-the-art research on a wide cross-section of topics, all unified by the overall theme of novel applications of surface modification. Specifically, papers are presented which consider nanoimprint lithography, statistical distributions of the coefficient of friction, the sliding drop method for optimizing surface energies for patterning in a roll-to-roll process, shakedown of residual stresses in titanium alloys, functionalized polymers and the determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes. The papers are authored by both academics and industrialists, further highlighting the broad theme of the conference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call