Abstract
BackgroundSignificant challenges exist in measuring ventilation quality during out-of-hospital cardiopulmonary arrest (OHCA) outcomes. Since ventilation is associated with outcomes in cardiac arrest, tools that objectively describe ventilation dynamics are needed. We sought to characterize thoracic impedance (TI) oscillations associated with ventilation waveforms in the Pragmatic Airway Resuscitation Trial (PART). MethodsWe analyzed CPR process files collected from adult OHCA enrolled in PART. We limited the analysis to cases with simultaneous capnography ventilation recordings at the Dallas-Fort Worth site. We identified ventilation waveforms in the thoracic impedance signal by applying automated signal processing with adaptive filtering techniques to remove overlying artifacts from chest compressions. We correlated detected ventilations with the end-tidal capnography signals. We determined the amplitudes (Ai, Ae) and durations (Di, De) of both insufflation and exhalation phases. We compared differences between laryngeal tube (LT) and endotracheal intubation (ETI) airway management during mechanical or manual chest compressions using Mann-Whitney U-test. ResultsWe included 303 CPR process cases in the analysis; 209 manual (77 ETI, 132 LT), 94 mechanical (41 ETI, 53 LT). Ventilation Ai and Ae were higher for ETI than LT in both manual (ETI: Ai 0.71 Ω, Ae 0.70 Ω vs LT: Ai 0.46 Ω, Ae 0.45 Ω; p < 0.01 respectively) and mechanical chest compressions (ETI: Ai 1.22 Ω, Ae 1.14 Ω VS LT: Ai 0.74 Ω, Ae 0.68 Ω; p < 0.01 respectively). Ventilations per minute, duration of TI amplitude insufflation and exhalation did not differ among groups. ConclusionCompared with LT, ETI thoracic impedance ventilation insufflation and exhalation amplitude were higher while duration did not differ. TI may provide a novel approach to characterizing ventilation during OHCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.