Abstract

Random disposal of waste tires and vinegar residues is deleterious to the environment; these materials can be sufficiently treated using pyrolysis and anaerobic digestion, respectively. In this study, pyrolytic carbon was used to enhance the performance of the anaerobic digestion of vinegar residues, which is a much more economic method comparing with dosing commercial-level carbon based materials. The conductivity of pyrolytic carbon at 1000 °C is much higher than that of commercial activated carbon. At a dosage of 10 g per 29 g of vinegar residues, the maximum volatile fatty acid production was 4225.4 mg COD/L in the reactor (effective volume of 400 mL) with inoculum to substrate ratio (ISR) of 1:1, representing an increase of 50.3% from that of the control reactor. A sufficient dosage is necessary to improve methane yield. The maximum methane yield was obtained at a pyrolytic carbon dosage, obtained at 1000 °C, of 12 g per 29 g of vinegar residues. The results indicated that the differences in the microbial communities of the control and experimental reactors correlated with the performance; however, the deep microbial mechanism of pyrolytic carbon boosting anaerobic digestion performance must be explored in further studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call