Abstract

The nature of plasma-induced surface radicals formed on a variety of organic polymers has been studied by electron spin resonance (ESR), making it possible to provide a sound basis for future experimental design of polymer surface processing using plasma treatment. On the basis of the findings from such studies, several novel bio-applications in the field of drug- and biomedical- engineering have been developed. Applications for drug engineering include the preparation of reservoir-type drug delivery system (DDS) of sustained- and delayed-release, and floating drug delivery system (FDDS) possessing gastric retention capabilities, followed by preparation of "Patient-Tailored DDS". Furthermore, the preparation of composite powders applicable to matrix-type DDS was developed by making a mechanical application to the surface radical-containing polymer powders with drug powders. In applications for biomedical engineering, the novel method to introduce the durable surface hydrophilicity and lubricity on hydrophobic biomedical polymers was developed by plasma-assisted immobilization of carboxyl group-containing polymer on the polymer substrate. The surfaces thus prepared were further used for the covalent immobilization of oligo-nucleotides (DNA) onto the polymer surfaces applicable to constructing DNA diagnosis system, and also plasma-assisted preparation of functionalized chemo-embolic agent of vinyl alcohol-sodium acrylate copolymer (PVA- PAANa).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.