Abstract

Effects of a hormone biosynthetic inhibitor on corrosion resistance of copper in synthetic seawater under various conditions were evaluated via quantum chemistry calculations, weight loss, electrochemical techniques, SEM, EDS, and FTIR. Comparable results show that uniconazole acts as a mixed-type inhibitor, suppressing charge transfer process by adsorption on copper surface. Thermodynamic calculation indicates that chemisorption is in accordance with Langmuir isotherm and adsorption amount increases with immersion time. The corrosion resistance with inhibitor under alkaline conditions is better than that under acidic or neutral conditions. Good inhibition performances at different temperatures and during a long time immersion are observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.