Abstract

Plasmodium falciparum malaria contributes to significant global diseases. Computer-aided drug design, screening, and discovery were used to analyze a novel series of Methyl Eugenol Benzaldehyde Thiosemicarbazone (MEBThi) and Methyl Eugenol Cinnamaldehyde Thiosemicarbazone (MECThi) derivatives for malaria falciparum inhibition. This present study showed that 16 molecules from 28 of MEBThi and MECThi have affinities and interaction with active-site residues of cysteine protease, a key player in erythrocyte proliferation of P. falciparum. 13-MECThi demonstrates the best binding affinity at ˗8.0 kcal/mol while co-drug ˗5.6 kcal/mol. Physicochemical and pharmacokinetic assays of 13- MECThi have also revealed this potent compound. Toxicity analysis shows that 13-MECThi does not have mutagenicity and carcinogenicity characters, whereas co-drug has mutagenicity probability. The molecular dynamic evaluation illustrated that the 13-MECThi complex has higher Root Mean Square Deviation (RMSD) values, indicating its structure was more flexible than the chloroquine complex. Root Mean Square Fluctuation (RMSF) complex of receptor and 13-MECThi has no fundamental differences with chloroquine complex. This designed compound should be considered a falciparum antimalarial drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.