Abstract

We investigated the effect of commercially available enzymes (alpha-amylase, alpha-galactosidase, papain, trypsin, and lipase) as well as proteases from deep-sea bacteria on the larval attachment of the bryozoan Bugula neritina L. The 50% effective concentrations (EC(50)) of the commercial proteases were 10 times lower than those of other enzymes. Crude proteases from six deep-sea Pseudoalteromonas species significantly decreased larval attachment at concentrations of 0.03 to 1 mIU ml(-1). The EC(50) of the pure protease from the bacterium Pseudoalteromonas issachenkonii UST041101-043 was close to 1 ng ml(-1) (0.1 mIU ml(-1)). The protease and trypsin individually incorporated in a water-soluble paint matrix inhibited biofouling in a field experiment. There are certain correlations between production of proteases by bacterial films and inhibition of larval attachment. None of the bacteria with biofilms that induced attachment of B. neritina produced proteolytic enzymes, whereas most of the bacteria that formed inhibitive biofilms produced proteases. Our investigation demonstrated the potential use of proteolytic enzymes for antifouling defense.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.