Abstract
In this paper, a novel ACO algorithm is proposed to solve the global path planning problems, called Heterogeneous ACO (HACO) algorithm. We study to improve the performance and to optimize the algorithm for the global path panning of the mobile robot. The HACO algorithm differs from the Conventional ACO (CACO) algorithm for the path planning in three respects. We modify the Transition Probability Function (TPF) and the Pheromone Update Rule (PUR). In the PUR, we newly introduced the Path Crossover (PC). We also propose the first introduction of the heterogeneous ants in the ACO algorithm. In the simulation, we apply the proposed HACO algorithm to general path planning problems. At the last, we compare the performance with the CACO algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.