Abstract

The phylogenetic diversity of the bacterial and archaeal community in the water and sediments of three large lakes of the Wadi An Natrun was investigated using 16S rRNA clone libraries. The bacterial community was diverse: 769 clones formed 345 operational taxonomic units (OTUs) defined at 99% 16S rRNA sequence identity. The bacterial community in both the water and sediments of the lakes was dominated by clones affiliated with the low G + C Gram-type-positive group, alpha-proteobacteria, and Bacteroidetes, (11-39, 11-30, and 10-37% of OTUs observed, respectively), patterns that have been observed in previously described alkaline, athalassohaline systems. However, a relatively high proportion of Firmicutess-related clones in the water of the lakes and alpha-proteobacteria in the sediments was observed. The bacterial community composition of the water and sediment of the same lake and of different lakes was significantly different (p < 0.05). Operational taxonomic units related to the gamma-proteobacteria were more abundant in the sediment of Lake Fazda, whereas the sediment of Lake UmRisha was dominated by members of the delta-proteobacteria. The proportion of gamma-proteobacterial and Bacteroidetes-affiliated OTUs were predominant in the water of Lake UmRisha and differed significantly from other lake waters (chi-squared analysis, p < or = 0.01). The more oxygenated and dilute nature of Lake Hamra was reflected in its microbial community composition, with the abundance of Bacillales sequences in the water, the absence of Halanaerobiales, Clostridiales, and Archaea in the water, and the presence of representatives of more phyla such as the Actinobacteria, Spirochaetes, and Verrucomicrobia. The archaeal community composition appeared less diverse: 589 clones resulted in 198 OTUs defined at 99% 16S rRNA sequence identity, and all sequences fell into the phylum Euryarchaeota. Phylogenetic analysis showed that many of the sequences were distantly related (83-90% 16S rRNA sequence identity) to cultured and uncultured archaea, with many clones forming clusters that branched deeply within the Euryarchaeota. Forty-two and 53% of the bacterial and archaeal clones had less than 90% 16S rRNA sequence identity to previously described sequences. This indicates that the water and sediments of the Wadi An Natrun harbor a unique and novel prokaryotic diversity that is different from what has been described among other alkaline, athalassohaline lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call