Abstract
Efficient and sustainable chemical fixation of CO2 into value-added chemicals is one of the most promising objectives in environmental chemistry. In this work, transition metal acetylacetonate immobilized onto triazolium ionic liquid-modified periodic mesoporous organosilica PMO-IL-M(x) was successfully prepared and investigated as an effective and heterogeneous catalyst in the direct carboxylation of terminal alkynes and CO2 to the desired alkynyl carboxylic acids. It was found that the catalyst PMO-IL-Sn(0.3) exhibited extraordinary catalytic performance in terms of excellent activity, stability, productivity, and excellent yields under mild reaction conditions. Moreover, the catalyst PMO-IL-Sn(0.3) could be easily recovered and reused at least six times without considerable loss in catalytic activity. This work provides a sustainable and efficient synergistic strategy for the chemical fixation of carbon dioxide into valuable alkynyl carboxylic acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.