Abstract

The DNA methyltransferase (DNMT) enzyme family consists of four members with diverse functions and represents one of the most promising targets for the development of novel anticancer drugs. However, the standard drugs for DNMT inhibition are non-selective cytosine analogues with considerable cytotoxic side-effects that have been developed several decades ago. In this work, we conducted a virtual screening of more than 65,000 lead-like compounds selected from the National Cancer Institute collection using a multistep docking approach with a previously validated homology model of the catalytic domain of human DNMT1. Experimental evaluation of top-ranked molecules led to the discovery of novel small molecule DNMT1 inhibitors. Virtual screening hits were further evaluated for DNMT3B inhibition revealing several compounds with selectivity towards DNMT1. These are the first small molecules reported with biochemical selectivity towards an individual DNMT enzyme capable of binding in the same pocket as the native substrate cytosine, and are promising candidates for further rational optimization and development as anticancer drugs. The availability of enzyme-selective inhibitors will also be of great significance for understanding the role of individual DNMT enzymes in epigenetic regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call