Abstract

A novel and efficient screening method for pyrroloquinoline quinone (PQQ) high-yielding methylotrophic strains was developed by using glucose dehydrogenase apoenzyme (GDHA) which depended on PQQ as the cofactor. Using this high-throughput method, PQQ high-yielding strains were rapidly screened out from thousands of methylotrophic colonies at a time. The comprehensive phylogenetic analysis revealed that the highest PQQ-producing strain zju323 (CCTCC M 2016079) could be assigned to a novel species in the genus Methylobacillus of the Betaproteobacteria. After systematic optimization of different medium components and cultivation conditions, about 33.4mg/L of PQQ was obtained after 48h of cultivation with Methylobacillus sp. zju323 at the shake flask scale. Further cultivations of Methylobacillus sp. zju323 were carried out to investigate the biosynthesis of PQQ in 10-L bench-top fermenters. In the batch operation, the PQQ accumulation reached 78mg/L in the broth after 53h of cultivation. By adopting methanol feeding strategy, the highest PQQ concentration was improved up to 162.2mg/L after 75h of cultivation. This work developed a high-throughput strategy of screening PQQ-producing strains from soil samples and also demonstrated one potential bioprocess for large-scale PQQ production with the isolated PQQ strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.