Abstract
(1) Background: Posterior circulation ischemic stroke has high mortality and disability rates and requires an early prediction prognosis to provide the basis for an interventional approach. Current quantitative measures are only able to accurately assess the prognosis of patients using magnetic resonance imaging (MRI). However, it is difficult to obtain MRI images in critically urgent cases. Therefore, the development of a noncontrast CT-based rapid-assist tool is needed to enhance the value of the clinical application. (2) Objective: This study aimed to develop an auxiliary-annotating noncontrast CT-efficient tool, which is based on a deep learning model, to provide a quantitative scale and the prognosis of posterior circulation ischemic stroke patients. (3) Methods: A total of 31 patients with posterior circulation ischemic stroke, diagnosed in the stroke registry at the Tri-Service General Hospital from November 2019 to July 2020, were included in the study, with a total of 578 CT images collected from noncontrast CT and MRI that were ≤ 3 days apart. A 5-fold cross validation was used to develop an image segmentation model to identify nine posterior circulation structures, and intersection over union (IoU) was used to assess the ability of the model to identify each structure. A quantitative score was integrated to assess the importance of the proportion of ischemic lesions in each posterior circulation structure, and the ROC curve was compared with the semiquantitative score for prognostic power. The prognoses of the patients were defined into two groups of 18 patients. An mRS score of 0–2 at discharge was defined as a good prognosis, while an mRS score of 3–6 was deemed to be a poor prognosis. (4) Results: The performance of the image segmentation model for identifying the nine posterior circulation structures in noncontrast CT images was evaluated. The IoU of the left cerebellum was 0.78, the IoU of the right cerebellum was 0.79, the IoU of the left occipital lobe was 0.74, the IoU of the right occipital lobe was 0.68, the IoU of the left thalamus was 0.73, the IoU of the right thalamus was 0.75, the IoU of the medulla oblongata was 0.82, and the IoU of the midbrain was 0.83. The prognostic AUC of posterior circulation patients predicted using a quantitative integrated score was 0.74, which was significantly higher than that of the pc-ASPECTS (AUC = 0.63, p = 0.035), with a sensitivity of 0.67 and a specificity of 0.72. (5) Conclusions: In this study, a deep learning model was used to develop a noncontrast CT-based quantitative integrated score tool, which is an effective tool for clinicians to assess the prognosis of posterior circulation ischemic stroke.
Highlights
There are approximately 2.93 million cases of posterior circulation ischemic stroke around the globe each year [1,2]
(5) Conclusions: In this study, a deep learning model was used to develop a noncontrast CT-based quantitative integrated score tool, which is an effective tool for clinicians to assess the prognosis of posterior circulation ischemic stroke
An efficient triage of patients for additional imaging diagnostics, adequate therapy regimes, and initial outcome prediction requires the detection of early ischemic changes in early hyperacute noncontrast computed tomography scans [3], which are commonly used in the diagnosis of acute ischemic stroke
Summary
There are approximately 2.93 million cases of posterior circulation ischemic stroke around the globe each year [1,2]. A quantitative assessment of patient prognosis is required for a better understanding of the prognosis of patients with posterior circulation ischemic stroke, after the intervention. If noncontrast CT can be used as the basis of interpretation, it can provide an early reference for intervention. The current quantitative tools are mostly based on magnetic resonance imaging (MRI), which is the most sensitive tool for the diagnosis of ischemic stroke; it can involve a longer time for the examination, a more restrictive environment, higher costs, limited availability and accessibility (especially in emergencies), and patient intolerance or incompatibility [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.