Abstract

AbstractAmphiphilic conetwork–structured copolymers containing different lengths of ethylene oxide (EO) chains as ionophilic units and methyl methacrylate (MMA) chains as ionophobic units were prepared by free radical copolymerization and characterized by FTIR and thermal analysis. Polymer gel electrolytes based on the copolymers complexed with liquid lithium electrolytes (dimethyl carbonate (DMC) : diethyl carbonate (DEC) : ethylene carbonate (EC) = 1 : 1 : 1 (W/W/W), LiPF6 1.0M) were characterized by differential scanning calorimetry and impedance spectroscopy. A maximum ion conductivity of 4.27 × 10−4 S/cm at 25oC was found for the polymer electrolyte based on (PEG2000‐b‐GMA)‐co‐MMA with long EO groups. Moreover, the effect of temperature on conductivity of the amphiphilic polymer electrolytes obeys the Arrhenius equation. The good room temperature conductivity of the polymer electrolytes is proposed to relate to the enhancement in the amorphous domain of the copolymers due to their amphiphilic conetwork structure. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.