Abstract

We report a novel amperometric flow-injection (FI) analysis of creatinine based on a sensor comprising copper oxide nanoparticles (CuO) coated with a molecularly-imprinted polymer (CuO@MIP) and decorating a carbon-paste electrode (CPE) to form the CuO@MIP/CPE electrode. The CuO@MIP was synthesized by using CuO as the supporting core, creatinine as the template, methacrylic acid (MAA) as monomer, N, N′-(1,2-dihydroxyethylene)bis(acrylamide) (DHEBA) as cross-linker, and 2,2′-azobis (2-methylpropionitrile) (AIBN) as initiator. Morphology and structural characterization reveal that CuO nanoparticle imprinted sites (CuO) synthesized using a precipitation method, exhibits features that are well suited to creatinine detection: high surface area, good analyte diffusion and adsorption characteristics that provide shorter response times, and large numbers of specific cavities for enhanced analyte capacity and sensitivity. Cyclic voltammetric measurements indicate that our sensor provides excellent performance toward electro-oxidation of creatinine. The amperometric FI system was used to quantitatively determine creatinine at the CuO@MIP/CPE sensor, in a phosphate buffer carrier. The imprinted sensor exhibits excellent performance for creatinine oxidation at an applied potential of +0.35 V and flow rate of 0.6 mL.min−1. The as-prepared sensor exhibits a linear dynamic range for creatinine detection from 0.5 to 200 μM (r2 = 0.995) with a limit of detection of 0.083 μM (S/N = 3). The system exhibits satisfactorily good precision (%RSD = 1.94%, n = 30) and selectivity toward creatinine. There is only approximately 20% loss from initial response after 2 weeks when stored at 4 oC. We successfully applied the FI detection system to detect creatinine in human urine samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.