Abstract

Soluble epoxide hydrolase (sEH) enzyme plays an important role in the metabolism of endogenous chemical mediators, epoxyeicosatrienoic acids, which are involved in the regulation of blood pressure and inflammation. According to the pharmacophoric model suggested for sEH inhibitors, some new amide-based derivatives of 3-phenylglutaric acid were designed, synthesized and biologically evaluated. Docking study illustrated that the amide group as a primary pharmacophore had a suitable distance from the three amino acids of Tyr383, Tyr466 and Asp335 for effective hydrogen binding. Most of the compounds showed moderate to high sEH inhibitory activities in in vitro test in comparison with 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid, as a potent urea-based sEH inhibitor. Compound 6o with phenethyl in R position exhibited the highest activity with IC50 value of 0.5nM. In this study, some new amide-based derivatives of 3-phenylglutaric acid were designed, synthesized and biologically evaluated. Most of the synthesized compounds provided nanomolar range inhibition against sEH enzyme. The best observed IC50 value was 0.5nM. Incorporating a carboxylic moiety into these structures by forming carboxylate salts would increase the solubility and improving physicochemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.