Abstract

Hybrid necrosis is a common type of hybrid incompatibility in plants. This phenomenon is caused by deleterious epistatic interactions, resulting in spontaneous activation of plant defenses associated with leaf necrosis, stunted growth and reduced fertility in hybrids. Specific combinations of alleles of ACCELERATED CELL DEATH 6 (ACD6) have been shown to be a common cause of hybrid necrosis in Arabidopsis thaliana. Increased ACD6 activity confers broad-spectrum resistance against biotrophic pathogens but reduces biomass production. We generated 996 crosses among individuals derived from a single collection area around Tübingen (Germany) and screened them for hybrid necrosis. Necrotic hybrids were further investigated by genetic linkage, amiRNA silencing, genomic complementation and metabolic profiling. Restriction site associated DNA (RAD)-sequencing was used to understand genetic diversity in the collection sites containing necrosis-inducing alleles. Novel combinations of ACD6 alleles found in neighbouring stands were found to activate the A.thaliana immune system. In contrast to what we observed in controlled conditions, necrotic hybrids did not show reduced fitness in the field. Metabolic profiling revealed changes associated with the activation of the immune system in ACD6-dependent hybrid necrosis. This study expands our current understanding of the active role of ACD6 in mediating trade-offs between defense responses and growth in A. thaliana.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.