Abstract

Sparse arrays have drawn attention because they can identify O(N2) uncorrelated source directions using N physical sensors, whereas uniform linear arrays (ULA) find at most N−1 sources. The main reason is that the difference coarray, defined as the set of differences between sensor locations, has size of O(N2) for some sparse arrays. However, the performance of sparse arrays may degrade significantly under sensor failures. In the literature, the k-essentialness property characterizes the patterns of k sensor failures that change the difference coarray. Based on this concept, the k-essential family, the k-fragility, and the k-essential Sperner family provide insights into the robustness of arrays. This paper proposes novel algorithms for computing these attributes. The first algorithm computes the k-essential Sperner family without enumerating all possible k-essential subarrays. With this information, the second algorithm finds the k-essential family first and the k-fragility next. These algorithms are applicable to any 1-D array. However, for robust array design, fast computation for the k-fragility is preferred. For this reason, a simple expression associated with the k-essential Sperner family is proposed to be a tighter lower bound for the k-fragility than the previous result. Numerical examples validate the proposed algorithms and the presented lower bound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.