Abstract
Primary teeth segmentation on cone beam computed tomography (CBCT) scans is essential for paediatric treatment planning. Conventional methods, however, are time-consuming and necessitate advanced expertise. The aim of this study was to validate an artificial intelligence (AI) cloud-based platform for automated segmentation (AS) of primary teeth on CBCT. Its accuracy, time efficiency, and consistency were compared with manual segmentation (MS). A dataset comprising 402 primary teeth (37 CBCT scans) was retrospectively retrieved from two CBCT devices. Primary teeth were manually segmented using a cloud-based platform representing the ground truth, whereas AS was performed on the same platform. To assess the AI tool's performance, voxel- and surface-based metrics were employed to compare MS and AS methods. Additionally, segmentation time was recorded for each method, and intra-class correlation coefficient (ICC) assessed consistency between them. AS revealed high performance in segmenting primary teeth with high accuracy (98 ± 1%) and dice similarity coefficient (DSC; 95 ± 2%). Moreover, it was 35 times faster than the manual approach with an average time of 24 s. Both MS and AS demonstrated excellent consistency (ICC = 0.99 and 1, respectively). The platform demonstrated expert-level accuracy, and time-efficient and consistent segmentation of primary teeth on CBCT scans, serving treatment planning in children.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.