Abstract

Laser desorption ionization mass spectrometry (LDI-MS) aroused intensive concerns for the merits of label-free and high-throughput analysis. Here, we designed a silver nanoparticles (AgNP)-modified indium vanadate nanosheets with doping samarium (AgNP@InVO4:Sm) nanosheets. The developed AgNP@InVO4:Sm nanosheets (AIVON) were synthesized based on the microemulsion-mediated solvothermal method and ultraviolet-assisted in situ formation of AgNP, then for the first time applied as a matrix in LDI-MS analysis. With the advantages including enhanced MS signal, little matrix-related background, high reproducibility, and good salt tolerance, AIVON exhibited much better prospect than non-modified indium vanadate nanosheets with doping samarium (IVON) and traditional organic matrix, thus allowing sensitive MS detection for a wide range of low-molecular-weight (LMW) molecules. Moreover, by coupling with headspace sampling thin-film microextraction (TFME), a kind of representative pollutant chlorophenols were identified and quantified via AIVON-assisted LDI-MS in environmental and biological samples. Volatile LMW pollutants could be preconcentrated after TFME, hence a sensitive and rapid assay with negligible sample matrix effect was realized by using AIVON-assisted LDI-MS. It is anticipated that this novel nano-matrix AIVON and the proposed TFME coupling detection strategy were of competitive merits for LDI-MS analysis in the fields of environment, biomedicine, and agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call