Abstract
The construction of supramolecular aerogels still faces great challenges. Herein, we present a novel bio-based supramolecular aerogel derived from G-Quadruplex self-assembly of guanosine (G), boric acid (B) and sodium alginate (SA) and the obtained GBS aerogels exhibit superior flame-retardant and thermal insulating properties. The entire process involves environmentally friendly aqueous solvents and freeze-drying. Benefiting from the supramolecular self-assembly and interpenetrating dual network structures, GBS aerogels exhibit unique structures and sufficient self-supporting capabilities. The resulting GBS aerogels exhibit overall low densities (36.5–52.4 mg/cm3), and high porosities (>95 %). Moreover, GBS aerogels also illustrate excellent flame retardant and thermal insulating properties. With an oxygen index of 47.0–51.1 %, it can easily achieve a V-0 rating and low heat, smoke release during combustion. This work demonstrates the preparation of intrinsic flame-retardant aerogels derived from supramolecular self-assembly and dual cross-linking strategies, and is expected to provide an idea for the realization and application of novel supramolecular aerogel materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.